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Abstract

A computational investigation of afterbody flow using a passive control method is conducted.
The passive control method consists of a porous surface placed over a plenum. The purpose of the
passive control method is to exploit the adverse pressure gradient present in afterbody flow in an
attempt to reduce boundary layer separation and afterbody drag. Four different porous wall models
are used to model the transpiration velocity in the region of passive control. A three-dimensional,
time-dependent, Reynolds-averaged, simplified Navier-Stokes solver, PAB3D, is used to simulate
afterbody flow with and without passive control. Three afterbody configurations with boat-tail
angles of 10°, 20° and 30° are used to obtain two-dimensional solutions with a freestream Mach
number of 0.6 and nozzle pressure ratio of 6. The region of passive control was initially placed
from 20%-60% of the nozzle length. The effect of the porous placement and porous extent is also
studied. Baseline (no porosity) two-dimensional solutions are qualitatively similar to experimental
data but under-predict the magnitude of the pressure recovery. Results for the subsonic solutions
show losses in the pressure recovery for some cases with passive control. Three-dimensional effects
are also investigated and seen to be very significant. Three-dimensional baseline solutions, for both
sub- and sﬂi)er—critical freestream Mach numbers, compare very favorably with the experimental
data in comparison to the two-dimensional solution. Future work is required to examine three-

dimensional afterbody flows with passive porosity.
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Nomenclature

permeability factor
discharge coeffictent, W, W
coefficient of pressure, (p-p /4 »
characteristic specific heat

flux vectors in x,v,z directions, respectively
axial thrust, N

ideal isentropic thrust, N

flux vector in ndirection

ratio of hole depth to plate thickness

Jacobian of coordinate transformation

Mach number

nozzle pressure ratio, p, /p .

ratio of hole area to total area (porosity fraction)
Prandt] Number

vector of conserved quantities

temperature, K

diameter of porous holes, m

hydraulic diameter of porous holes,

total energy

heat transfer coefficient

local static pressure, Pa

jet total pressure, Pa

dynamic pressure, Pa

time

thickness of porous plate,

velocity component in x,y,= directions, respectively
transpiration velocity (normal to surface), m/s
ideal mass flow rate, kg/s

mass flow rate, Ag/s

coordinate in streamwise direction
finish location of the porous region,
start location of the porous region, m

coordinate in spanwise direction
coordinate in vertical direction

ratio of specific heats

generalized coordinate in radial direction
generalized coordinate in circumferential direction
molecular viscosity, kg/m-s

generalized coordinate in streamwise direction
density, kg/m?



T shear stress

111 fine grid sequence

122 medium grid sequence

144 coarse grid sequence

Subscripts

o freestream condition

)/ plenum condition

{ partial derivative with respect to time

v viscous condition

w wall condition

X,z partial derivative with respect to corresponding Cartesian coordinate
En, ¢ partial derivative with respect to corresponding generalized coordinate
Superscripts

L laminar condition

T turbulent condition



1. Introduction

The tlow past an airfoil or afterbody can contribute greatly to the drag of an aircraft, and thus,
is of concern in the fields of military and civil aviation. Such drag may increase significantly in the
presence of flow separation. In subsonic flows, separation may occur if the attached flow is unable
to negotiate the adverse pressure gradient imposed by the geometry of the airfoil or afterbody. In
transonic flows, the presence of a shockwave is an additional mechanism that can induce flow
separation. Flow separation causes viscous dissipation and a large increase in the form drag. It is
the objective of boundary layer control to eliminate or minimize the flow separation, and thus
decrease drag. This ultimately improves the aerodynamic efficiency of airfoils and the aero-
propulsive efficiency of after-bodies. In the present work, we are concerned with boundary layer
control on aircraft after-bodies.

Methods of boundary layer control may be classified as either active or passive control
methods. Active control methods employ either suction from, or blowing into, the boundary layer
to eliminate or minimize flow separation. With the use of suction, low momentum fluid close to the
wall is removed, and the remaining higher momentum fluid is better able to withstand the adverse
pressure gradient without separating. The addition of high momentum fluid adjacent the wall is
accomplished through boundary layer blowing. The added fluid increases mixing in the boundary
layer and thus, minimizes flow separation. Active control methods, however, have some penalties.
The auxiliary equipment, including pumps, valves, and meters, result in added weight, complexity,
and costs which may outweigh the benefits of the drag reduction.

Passive control methods, in contrast, are simpler, have a lower cost of implementation, and no

additional weight. Passive control exploits naturally occurring phenomena to obtain desirable flow



characteristics. The passive control method examined in this investigation is that of passive
porosity. As shown in Figure 1, this control approach uses a porous surface placed above a plenum
in a region with large pressure gradients; in this example, the pressure gradients are a result of a
shockwave. The high-pressure region over the aft portion of the porous surface is allowed to
communicate with the low-pressure region over the forward portion of the porous surface. This
communication through the porous region produces suction over the aft portion and blowing over
the forward portion. The natural suction over the aft portion of the porous surface decreases the
boundary layer thickness and increases the skin friction. Blowing on the forward portion of the
porous surface increases the boundary layer thickness and decreases the skin friction. The coupled
suction and blowing provided by this passive control method can yield the benefits of both suction
and blowing — reduced pressure gradient and prevention of flow separation — without the added
cost and space associated with the active control approaches.

Several experimental studies have examined the effect of passive porosity. Previous research
has shown that the method of passive porosity can enhance wing performance at transonic speeds
by reducing or eliminating shock-induced separation. Bahi!> conducted experimental tests to
examine the effect of passive porosity on circular arc and supercritical airfoils. The experiments
showed that the shock structure was modified from a normal shock without porosity to a lambda
shock with passive porosity. The flow through the porous surface, blowing upstream and suction
downstream of the shockwave, minimized the flow separation. Raghunathan and Mabey conducted
similar tests on a circular arc airfoil®. Their experimental tests included not only holes normal to the
surface of the airfoil in the porous region, but forward- and backward-facing holes as well. Pressure
profiles in the wake confirmed increases in viscous losses near the wall, and an overall drag

reduction was seen for all hole configurations. Experiments conducted on ogive-forebodies by



Bauer ct al* showed that passive porosity reduces the side force at subsonic and transonic speeds.
These studies!-* suggest that there is also potential to reduce aircraft afterbody drag through the
application of passive porosity.

Several researchers have employed computational methods in examining the passive porosity
control method. The inclusion, however, of the plenum and individual holes associated with the
passive porosity geometry in the computational domain can be complicated and expensive. Thus,
boundary conditions modeling the flow in the porous region have been investigated to reduce the
size and cost of computations with passive porosity. Chokani and Squire> computationally modeled
a passive porosity wind tunnel experiment. A linear Darcy pressure law was used with a constant
porosity coefficient to model the transpiration velocity in the porous region. Under the assumption
of the Darcy law that the pressure change is the only driving force in the calculation of the
transpiration velocity, agreement was reasonable compared to the experimental results. Hanna®
examined the use of passive porosity in hypersonic shockwave/turbulent boundary layer
interactions with the same Darcy pressure law as used in Ref. 5. However, in Ref 6, a variable
(sinusoidal in nature) porosity coefficient was also used. The variable porosity coefficient predicted
differences in the transpiration velocity in the interaction region but similar pressure distribution
when compared to results using a constant porosity coefficient.

The inadequacies in the above models arise in their simplicity. The assumed linear relationship
between the transpiration velocity and the pressure change across the porous plate does not
adequately represent the actual flow physics. Other factors such as plenum and hole geometry have
been shown to affect flow characteristics in the porous region?. There also exists no constitutive
relation between the porosity coefficient used in the Darcy law and actual geometry of the porous

material. Hence, this study examines more physically based models” for the porous surface with
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passive control. The application of these models to the flow over an aircraft afterbody is also
examined.

The approach in this work is computational in nature. A Navier-Stokes code, PAB3D, 1s used
to simulate the afterbody flow with and without passive porosity. The code is modified to examine
the adequacy of different porous wall models. The specific objectives of this study are:

i) to evaluate porous wall models for passive porosity; and
i) to computationally examine the effectiveness of afterbody flow control using passive
porosity.

The numerical procedure is outlined in the following chapter; the details of the different porous
wall models are described. In the next chapter, the results of this study are then described; these
results include the validation of the porosity models and both two- and three-dimensional
computational solutions of afterbody flows. The last chapter summarizes the significant findings of

the study and suggests areas for future work.



2. Numerical Procedure

2.1 Governing Equations

The governing equations of interest in this study are the three-dimensional, time-dependent,
Reynolds-averaged. simplified Navier-Stokes equations. These equations are described in full in
Appendix A. As the dominant dissipative effects arise from diffusion normal to the surface of the
afterbody model, only the diffusion terms normal to the surface are retained in the governing
equations. This optional representation of the Navier-Stokes equations is commonly referred to as a
thin layer approximation. In a generalized coordinate system, the resulting conservative form of the

governing equations is expressed as

-

where

G= %(V,Q+fz_rF+f7yG+f7:H)

and other variables defined as outlined in Appendix A. The ideal gas relationships for energy,
enthalpy and pressure complete the system of equations.
2.2 Computational Algorithm

The general three-dimensional Navier-Stokes code PAB3D was used to obtain solutions of the
system of governing equations. The P4B3D code is more fully described elsewhere$-10, but a few
important features are presented here. The code uses a finite volume formulation in which the
spatial derivatives in the governing equations are evaluated as conservative flux balances across
grid cells. The convective flux terms at the cell interfaces are determined with a Roe, upwind-

biased, flux-difference scheme; the scheme is spatially third-order accurate. The van Leer scheme
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is used to construct the implicit operator. Central differencing is used for the diffusion terms of the
fluxes. An approximately factored, alternating-direction-implicit scheme in delta form is used for
the time-differencing algorithm. A detailed description of the mathematical formulation for these
schemes can be found in other literatures.

The numerical code has the option for either space- or time-marching solutions. The space-
marching option is well suited for supersonic flows or flows in which pressure gradients are
practically absent. When space-marching criterion were met, the space-marching algorithm was
used as the computer time required for the space-marched solution is significantly less than that for
the time-marched procedure. The code PAB3D has options for numerous algebraic Reynolds stress
turbulence models to calculate of the turbulent shear stress!2:!3, Linear k-£equations are available
which include the use of the damping function of Jones & Launder!#. Non-linear algebraic
Reynolds stress models are also available including those of Shih, Zhu & Lumley!S and Girimaji'S.
The use of a particular model will be noted later as it is applied. The initialization of the viscous
flow transition from laminar to turbulent is done by the placement of k and € profiles at user-
specified lines or planes in the flowfield. This initial turbulent profile then develops as permitted by
local flow conditions.

2.3 Boundary Conditions

The boundary conditions along the block faces were specified as follows. The Riemann
invariants along characteristic lines were used to calculate the primitive flow variables at the
freestream inflow boundary face and the lateral outer boundary faces. Symmetry boundary
conditions were imposed along the centerlines upstream and downstream of a model and along the
internal jet centerline. The internal nozzle inflow boundary face for the afterbody geometry was

specified using total pressure and temperature. At the downstream boundary faces, an extrapolation



boundary condition is applied. No-slip, impermeable. adiabatic, zero normal pressure gradient
boundary conditions were applied along all solid walls. For regions of passive control, no-slip,
permeable, adiabatic, zero-normal pressure gradient boundary conditions were applied; four
different porosity models were examined to determine the transpiration velocity in regions of
passive control.
2.4 Porosity Models
2.4.1 Darcy-Constant Model

The plenum chamber below a porous surface is assumed closed except for the porous surface

itself. Thus, the net mass flow rate over the porous surface 1s zero, i.e.

[Py dc=0

The first porosity model (Darcy-constant) is the linear form of the Darcy pressure-velocity law

present in the original PAD3D code. The velocity normal to the wall is specified as

v, = aC(pP - pw)

where

1

VAP,

a =

and C=C, is a user defined constant permeability factor. Assuming the plenum pressure is constant,

the plenum pressure may be determined from

Ja 2.0 .dx

Pr = ja 0. dx



A similar procedure is used in the determination of the plenum pressure for all the other porosity
models.
2.4.2 Darcy-sinusoidal Model

The second model (Darcy-sinusoidal) follows Hanna® where the Darcy law, is used with a
sinusoidal varying permeability factor:

- X

T e
c=C, L+\;5m zlrox,
2 X, - X,

where C| is the same permeability factor as used in the Darcy-constant model.

The widespread usage of the above two Darcy models in previous research is due in part to
their simplicity. The assumption that the transpiration velocity is driven only by the change in
pressure across the porous surface provides a model that is easy to implement in a computer code.
The simplicity of the model, however, is the source of its limitations. The Darcy law poorly models
flow physics as it assumes a linear relationship between the change in pressure and the transpiration
velocity. The model also neglects potentially important parameters such as thickness of porous
plate, hole diameter and length, and geometry of plenum. Also, the choice of permeability factor is
at present arbitrary. A calibration of the permeability factor is required for accurate representation
of a degree of porosity.

2.4.3 Darcy-geometric Model

Idel'cik? has shown that the effects of porosity not only depend on the pressure change across

the porous plate, but also the characteristics of the flow through the holes in the porous region and

the hole geometry. The third model (Darcy-geometric) thus uses the Darcy law in the form:




where the permeability r 1s defined by

where H is the ratio of hole depth to plate thickness. In cases presented here, the porous surface Is
considered flat with holes perpendicular to the plate surface, hence H=/. Also, cylindrical shaped
holes are assumed in the porous region, and the hydraulic diameter is then the geometric diameter

of the holes, i.e. d;,=d.

2.4.4 Pipe Flow Model

In the investigation by Poll and Danks!7 the transpiration velocity in the porous region is
determined by the assumption that the flow through each hole in the porous plate is “pipe” like. The
pipe draws air from the high-pressure side of the porous plate, and ejects it in the form of a jet on

the low-pressure side. The resulting non-linear relation is used as the fourth model (Pipe flow);

Y =40.76 X +1.962X"

where

zpd
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As this model implicitly expresses the transpiration velocity as a function of the plenum pressure, a
secant method of iteration is used to determine the plenum pressure.
2.5 Experimental Database

The experimental data used as baseline test cases were obtained by Carlson and Asbury!® in
tests conducted in the NASA Langley Research Center's 16-Foot Transonic Wind Tunnel!? The
test model was a three-dimensional isolated nacelle geometry with interchangeable after-bodies.
Three nozzle boat-tail angles of 10°, 20° and 30° without passive control were tested over a range
of Mach numbers and nozzle pressure ratios. An external high-pressure air system was used to
simulate the internal flow and to exhaust a jet from the nozzle. Pressure taps were located
externally on the centerline of the afterbody to obtain surface pressure distributions. A balance used
with the model provided aerodynamic data such as drag.
2.6 Grid Generation

The algebraic grid generation code developed by PaoZ0 was used to generate the body-fitted,
structured, computational grids used in this study. A multiblock/multizone grid structure was
employed allowing each of the six faces on a block to have any combination of boundary
conditions. On wall bounded blocks, the initial cell height and grid stretching were examined to
ensure that the grid was capable of resolving flow properties in a boundary layer. Cell size
matching at block interfaces was also enforced to ensure good communications between blocks.
2.7 Performance Analysis

Nozzle performance characteristics were obtained through the use of a nozzle performance
package developed by Carlson?!. The aero-propulsive forces are determined through the

application of the momentum theorem to a control volume surrounding the nozzle. That is, the
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mass flux and pressure forces are integrated over the control volume to obtain the net force acting

on the control volume:

F= Zp&(& : ﬁ)+ (p=p,JiVA+F,,

where F is the total vector body force, V4 is the area attributed to the cell face, and skin friction,

Fjc is calculated along solid wall boundaries.
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3. Results and Discussion

The porous wall models were first evaluated by examining two transonic shockwave/boundary
layer interaction test cases. Chokani and Squire and Bahi!>. A grid refinement study was then
conducted on the two-dimensional afterbody grid to assure solutions obtained would be grid
independent. The effect of passive porosity on afterbody flow is first studied on the two-
dimensional grid at subsonic freestream conditions. The effects of the placement of the porous
region as well as its extent are also studied. Finally, the three-dimensional effects on the afterbody
flow are investigated and compared to the two-dimensional solutions.

3.1 Validation Results
3.1.1 Passive Control on a Flat Plate

Chokani and Squire’ conducted an experimental and computational study of the passive
porosity concept. The experimental set-up consisted of a circular arc airfoil of chord 80mm and
radius of curvature 163mm placed on the floor of the wind tunnel. At a freestream Mach number of
0.76, the back pressure in the tunnel was adjusted such that the acceleration of the flow over the
airfoil produced a supersonic region that terminated with a shockwave near the trailing edge of the
airfoil. The shockwave formed on the airfoil extended to the roof of the tunnel generating a
shockwave/boundary layer interaction region on the roof of the tunnel. In this region, a porous
insert was placed beneath a closed plenum to examine the effect of passive porosity. The flat roof
was chosen as the location of the passive control region to eliminate surface curvature effects in the
interaction region.

The two-dimensional computational domain, partially shown in Figure 2, represents the true
dimensions of the wind tunnel, 1200mm in length, 63mm in height, with a floor divergence of 0.4°

beginning at the tunnel entrance (Omm). Flow travels from left to right, and a cell width space is
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placed at block boundary locations for clarity. As both the floor and roof of the tunnel are modeled
as solid walls, the grid is clustered on both the top and bottom of the computational domain to
capture the details in the boundary layer. The porous region is located on the tunnel roof between
x/c=0.825 and x/c=1.075 where the ratio of hole area to porous region area is 13.6%. In the
computational solution, the location of the porous region is denoted in Figure 2 by the solid line
just above the computational domain. The porous region is slightly shifted in the computational
domain to allow for grid sequencing in obtaining the solution. In the calculation of the transpiration

velocity in the porous region, Chokani and Squire used the Darcy law in the form

with a permeability constant, C=4.5x10-3m?s/kg. The average density and pressure at the wall in the
porous region were used to calculate an equivalent permeability factor for use in the equation

presented in §2.4.1; C;=1.04. Table ! lists the additional geometric parameters outlined in the

experiments that were used in the porosity models.

For a baseline, no passive control, solution, the pressure distribution on the roof of the tunnel is
shown in Figure 3 compared to the experimental data. The Girimaji'® turbulence model is used for
these tunnel simulations. The trend in the computational solution follows the experimental data.
The Mach number and position of the shock are slightly under-predicted, but the shock is still
positioned well within the region where passive control is to be applied. As the tunnel is long and
narrow, the boundary layers on the walls of the tunnel are thick and play an important role in the
shock interaction. Figure 4 shows the upper wall pressure distributions for flow with passive
control for all porous wall models compared to the experimental data with passive control. The

computational solutions again predict pressure distributions similar to that seen in the experiment.
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The Darcy-constant and Darcy-sinusoidal models predict well the pressure relief seen in the porous
region. The Darcy-geometric and Pipe flow models predict greater pressure relief in the porous
region than the experiment. Downstream of the porous region, all porous model solutions converge
to a wall pressure that is the same downstream pressure predicted in the baseline case. This return
to a wall pressure that is the same as the baseline case is reflected in the experimental data as well.

The transpiration velocity distributions for all porous wall models are shown in Figure 5. The
general trend for the transpiration velocity distributions is what one would expect. Negative wall
velocities, representing flow from the freestream into the plenum, occur over the aft portion of the
porous region, and positive wall velocities, representing flow from the plenum into the freestream,
occur over the forward portion of the porous region. However, in Figure 5, all models but the Pipe
flow model show a small region of negative wall velocities at the very beginning of the porous
region. This unexpected region of flow into the plenum may be a result of inaccuracies in either the
porous wall model, the calculation of plenum pressure, or an abrupt change in boundary condition
from a solid wall to a permeable wall. The sensitivity of the permeability factor in the Darcy-
constant and Darcy-sinusoidal models is shown in Figure 6 in the form of the transpiration velocity
distributions. The permeability constant, C; was changed from its original value of 1.04 to a value
of 0.6. Both models show very little sensitivity to the large change in the permeability constant. At
most, the change in transpiration velocity is on the order of 3m/s. It can also be noted from the
normal velocity curve that in all cases, the mass flow drawn into the cavity is equal to the mass
flow blown out of the cavity, verifying the conservation of mass.

Mach number and density contour lines near the wall at the shock location are shown in Figure
7 for the baseline (no porosity) solution. The near-normal shock generated on the airfoil to

impinges on the upper wall. Figures § and 9 show the same flowfield contours for solutions with
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passive control using the Darcy-constant and Darcy-sinusoidal models, respectively. Density
contours for both models show thickening of the boundary layer caused by the blowing of air into
the freestream upstream of the shockwave, and movement of the shockwave toward the end of the
porous region. A distinct oblique shockwave is not observed at the leading edge of the porous
region, and the shockwave appears to penetrate the boundary layer closer to the wall than in the
baseline solution. The results seen in Figure 10 for the Darcy-geometric porosity model are
qualitatively in better agreement with experimental data of Chokani and Squire. The shockwave
does not penetrate the boundary layer as close to the wall as in the baseline case, and the contour
lines show the spreading out of the shock in the boundary layer. These are a result of transpiration
velocities much greater in magnitude, as shown in Figure 5, for the Darcy-geometric model
compared to the other models. Figure 11 shows the flowfield solutions for the non-linear Pipe flow
model. Similar to the Darcy-geometric model, the penetration of the shockwave in the boundary
layer is not as close to the wall as in the baseline case, however, the spreading of the shock seen in
the Chokani and Squire experiment is less evident. The differences in the solutions obtained in this
study compared to those obtained by Chokani and Squire may be a result of the use of different
turbulence models (Chokani and Squire used the algebraic Baldwin-Lomax turbulence model) and
different implementation of the porous boundary condition.

The results from the study of passive porosity on a flat plate indicate the Darcy-geometric and
Pipe flow models better predict both the flow field characteristics and surface pressure distributions
shown by the experiment.

3.1.2 Passive Control on a Circular Arc Airfoil
Bahi!-2 conducted an experimental study on the application of passive porosity on airfoils.

Experimental tests were conducted on the flow over a 12%-thick, circular-arc airfoil with a
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freestream Mach number of 0.83. The presence of the airfoil on the floor of the tunnel accelerates
the flow producing a supersonic region over the airfoil. This supersonic region terminates in a
shockwave located on the aft portion of the airfoil. A porous region was then placed on the airfoil
from 57%-80% of the airfoil chord to examine the effects of passive porosity. The two-dimensional
computational domain is shown in Figure 12. The entire computational domain extends
approximately five chord lengths both upstream and downstream of the airfoil, as well as in the
streamwise-normal direction.

For the baseline, non-porous case, the comparison of the Mach number distributions for the
computational solution and experimental data is shown in Figure 13. The comparison is quite good.
The shock is accurately captured at approximately 63% of the airfoil chord. As in the experiment, a
porous region was then added from 57%-80% of the airfoil chord. A porous open area of 7%

characterized the porosity. In characterizing the porosity in this study, a value of C;, =0.8 was used

for the constant and sinusoidal porosity models. Geometric parameters as outlined in Bahi's
experiment, listed in Table 1, were used in the Darcy-geometric and Pipe flow models. The Mach
number distributions for each porosity model are shown in Figure 14. Compared to the
experimental data, a similar decrease is seen in the peak Mach number for all models except the
Darcy-sinusoidal model. Flowfield Mach number and density contours near the location of the
shock are shown in Figures 15 and 16 for the Darcy-geometric and Pipe flow models, respectively.
The Mach number distributions for the porous solutions predict a weak oblique shock followed by
a strong shock located near the aft of the porous region. Although not seen in the Bahi experiment,
the computed Mach number distributions are similar to the distributions observed in the passive

control experiments of Raghunathan and Mabey?.



To further evaluate the adequacy of the porous boundary condition, the velocity profile normal
to the surface for each model is shown in Figure 17. The shape of the velocity distribution and
velocity magnitudes are similar to those presented in experimental and computational work by
Chokani and Squire3. The sensitivity of varying the porosity for the Darcy-constant model is shown
in Figure 18; it is seen that an increase in the permeability factor corresponds to increased wall
velocities in and out of the plenum. It can also be noted from the normal velocity curve that in all
cases, the mass flow drawn into the cavity is equal to the mass flow blown out of the cavity,
verifying the conservation of mass.

The results from the study of passive porosity on a circular arc airfoil support the indication
that the Darcy-geometric and Pipe flow models perform better than the Darcy-constant and Darcy-
sinusoidal models. The models predict the lambda shock structures and Mach number distributions
seen in various passive porosity experiments.

3.2 Grid Dependence

A grid sequencing technique is used to obtain the solutions in this study. When the grid is
generated, its dimensions are chosen as multiples of four. The coarse, medium, and fine grids are
then obtained in the following manner. For a coarse grid solution, denoted 444 for a three-
dimensional grid and /44 for a two-dimensional grid, every fourth grid point is used in obtaining
the solution. For a medium grid solution (222 or /22), the solution is obtained using every other
grid point. Finally, on a fine grid, ///, the solution are obtained with every grid point. The
solutions at each grid level are converged before sequencing to the next grid level. Using this grid
sequencing technique saves time in obtaining solutions as it allows major flow characteristics to
develop on a coarse grid, followed by the development of smaller scale characteristics in the

medium and fine grid solutions.
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The two-dimensional afterbody computational domain has overall coarse, medium, and fine
grid levels of dimensions /86 x7/, 372x142, and 744 x284. A grid refinement study was conducted
on this two-dimensional computational domain which consisted of 11 blocks. The grid dimensions
of each block are shown in Table 2. Figure 19 shows the effect of grid refinement on the

performance parameters for the 20° nozzle with A/_,=0.6 and NPR=6 with porosity using the

Darcy-constant porosity model. This case is representative of the results for all solutions examined.
There is very little change in the discharge coefficient and axial thrust ratio from the medium grid
to the fine grid, indicating that the results are grid independent.
3.3 Solution Convergence

For the nozzle studies presented herein, both the residual and nozzle performance
characteristics were used to assess the solution convergence. Nozzle performance quantities such as
the discharge coefficient and the internal thrust ratio were analyzed using the nozzle performance

package developed by Carlson20. As a representative case, the results for the M=0.6, NPR=06, 20°

nozzle flow with porosity and the Darcy-constant model are used. Figure 20 shows the convergence
histories for the discharge coefficient and the axial thrust ratio. The discharge coefficient and thrust
ratio are shown to converge on each grid level (coarse, medium, and fine). Over each grid level,
there is an approximate order of magnitude drop in the residual as shown in Figure 21.
3.4 Two-Dimensional Subsonic Computations

The two-dimensional simulations obtained for the afterbody geometry were for a subsonic

freestream Mach number, Af_=0.6, and a nozzle pressure ratio, NPR=6. The two-dimensional
computational domain for the 10° nozzle afterbody is shown in Figure 22, noting that only every 5th

grid line is shown to enable easy viewing. The entire domain extends approximately 20 model

lengths both upstream and downstream of the model, as well as in a stream-wise normal direction.



A comparison of the pressure distribution for the experimental data and computational solution for
the 10°, 20°, and 30° nozzles without control is presented in Figure 23. In all cases, the
computation under-predicts the pressure recovery on the forward portion of the nozzle. As the
nozzle cross-sections in the experiment are rectangular in shape, the discrepancy between the two-
dimensional computational solutions and the experimental data may be due to three-dimensional
effects present in the experiment. These effects may be more pronounced near the shoulder of the
nozzle. The porous region on the afterbody was initially placed from 20%-60% of the nozzle
length. This location coincided with the largest pressure gradient observed in the experimental data.
A permeability factor of C,=0.8 was used in the constant and sinusoidal porosity models. Table 1
shows the geometric parameters used for the Darcy-geometric and Pipe flow models in all
afterbody computations; these are based on the conditions for the proposed experiment at NASA
Langley Research Center.

The effect of porosity on the pressure distributions for the 10°, 20°, and 30° nozzles, both solid
and porous, are compared in Figure 24. For the 10° nozzle, the addition of porosity using the
Darcy-constant and Darcy-sinusoidal porosity models predict a loss of pressure recovery, while the
expansion over the forward portion of the nozzle is the same as the baseline case. The Darcy-
geometric porosity model, however, predicts an increase in the pressure recovery with a decrease in
the expansion over the nozzle shoulder. For the 20° nozzle, the addition of porosity using all
models predicts a decrease in the nozzle expansion but a loss in pressure recovery compared to the
baseline case. In the 30° nozzle case, all models predict little change in pressure recovery, and the
pressure distributions are quite similar. An exception, however, is the Darcy-geometric model that
predicts an over-expansion of the nozzle shoulder. Although the effects of porosity may appear

adverse in terms of pressure recovery, the loss does not appear significant. It should be kept in
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mind that the primary objective of using passive porosity is to alleviate the adversc effects of
shockwave/boundary layer interactions. Thus, a subsonic case is considered an off-design case for
the application of passive porosity.

Figure 25 shows the effect of the porosity model on the distribution of the transpiration
velocity for the 10°, 20°, and 30° nozzles. Flow suction occurs over the aft portion of the porous
surface, identified by negative wall velocities, and flow is injected back into the external flow over
the forward portion. The transpiration velocity distributions are in general linear. These linear
distributions differ from the velocity distributions over the circular arc airfoil in Figure 17. The
distributions over the circular arc airfoil are the result of a shockwave, i.e. an abrupt pressure
change. Since there is no shockwave present in a subsonic nozzle flowfield, the pressure changes
over the nozzles are gradual, resulting in the linear transpiration velocity distribution.

Table 3 contains the afterbody pressure drag coefficients for all nozzles with and without
porosity. For the 10° nozzle, the baseline case has the lowest coefficient of drag when compared to
the porous afterbody using all four models. The loss in pressure recovery shown by the models for
the 10° nozzle results in higher drag. For the 20° and 30° nozzles, some models predict drag
reduction while others predict increases in drag. Reduction in drag as a result of passive porosity at
a subsonic, off-design, case, would be an added advantage due to the reductions that potentially
exist at a design (that is, transonic) Mach number.

3.5 Effect of Porous Placement

The effect of the placement of the porous surface was next investigated for the 20° and 30°

nozzles. The higher angle nozzles were chosen to exploit the increased expansion across the nozzle

shoulder. The porous region was moved forward to 0%-40% of the nozzle length; note that the



extent of the porosity was kept fixed. The Darcy-geometric and Pipe flow models were used to
examine the effect of porous placement.

The resulting pressure distribution for the 20° nozzle is shown in Figure 26. Both models show
a smaller expansion and loss in pressure recovery. The two models also show quite similar
behavior. In the case of the 30° nozzle, Figure 27, the expansion is delayed downstream of the
nozzle shoulder, and is predicted aft for the Darcy-geometric model. The overall pressure recovery
is similar in both cases. The corresponding transpiration velocity distributions for the 20° and 30°
nozzles are shown in Figures 28 and 29, respectively. For the 20° nozzle, the Darcy-geometric
model predicts velocities twice the magnitude of the predicted Pipe flow velocities. In contrast, for
the 30° nozzle, it is the Pipe flow velocities that are twice the magnitude of the Darcy-geometric
velocities. In both cases, the overall magnitude of the velocities are greater than those seen in the
original porous placement case.

From the results for placing the porous region from 0%-40% of the nozzle length, gains in
pressure recovery appear to be more significant for the30° nozzle, but a greater relief of the initial

expansion is observed for the 20° nozzle. The initial expansion of the flow over the nozzle may

prove problematic in the plenum as, for the 30° nozzle, low velocity flow is seen to enter the
plenum at the beginning of the porous region. Placing the porous region from 0%-40% of the
nozzle length also results in higher predicted drag as shown in Table 4. The result of additional
drag would have to be weighed against advantages present at design conditions.
3.6 Effect of Porous Extent

It is desirable to keep the porous region as small as possible, without reducing its effectiveness;
thus, the porous region was reduced in size extending from 20%-40% of the nozzle length. This

location of the porosity was again chosen in an attempt to exploit the expansion of the flow over the



nozzle. The effect of the porosity on the 20° nozzle for the two models, Figure 30, is almost the
same, showing the same expansion and loss in recovery over the nozzle. For the 30° nozzle, Figure
31, both models predict a slight gain in pressure recovery compared to the baseline case. In addition
to the gain in predicted pressure recovery, the Darcy-geometric model predicts a smaller expansion
over the nozzle shoulder.

The transpiration velocity distributions for the 20° and 30° nozzles are shown in Figures 32
and 33, respectively. The predicted velocities on the 20° nozzle are greater for the Darcy-geometric
model, but similar in both cases to the predicted velocities of the 20%-60% porous region.
Similarly, the distributions on the 30° nozzle are similar both in shape and magnitude to each other,
and to the results seen for the porous region from 20%-60% of the nozzle length.

The afterbody pressure drag coefficients for the above mentioned cases are shown in Table 5,
and in all but one case, predict a reduction in drag with the addition of passive control. Reducing
the size of the porous region is seen to not reduce the effectiveness of the passive porosity. The
reduced region shows increased pressure relief over the nozzle as well as increases in pressure
recovery on the 30° nozzle, and decreases in drag at an off-design condition would be an addition
to advantages present at design conditions.

3.7 Three-Dimensional Computations

As previously shown in Figure 23, the two-dimensional solutions under-predicted the pressure
recovery on the afterbody. The two-dimensional computations were considered due to the high
aspect ratio (ratio of width to height) of the nozzle exit, 6.39 (exit height of 1.35¢m and width of
8.64cm), for the 20° boat-tail angle. On the other hand, the afterbody has a low aspect ratio at the
nozzle-connect, 1.097 (connect height of 7.87cm and width of 8.64¢m). The under-prediction in the

two-dimensional solution may be a result of pressure relief around the side of the afterbody. To



investigate the three-dimensional effects associated with the afterbody, the three-dimensional grid
shown in Figure 34 was generated. The grid represents the actual experimental configuration with
the twenty-degree afterbody and symmetry planes as noted.

Using the three-dimensional computational domain, the same subsonic flow conditions,

M =0.6 and NPR=0, were used to obtain a three dimensional solution. The surface pressure

distribution along the centerline of the afterbody is shown in Figure 35 compared to both the two-
dimensional solution and experimental data. The three-dimensional solution is in better agreement
with the experimental data. The marked difference in surface pressure distribution between the two-
and three-dimensional solutions illustrates the three-dimensional effects associated with the
afterbody flow. The drag calculated from the computational solution also confirms the importance
of the three-dimensional effects in afterbody flow. The experimental nozzle pressure drag
coefficient is 0.0596. and the three-dimensional solution predicted a nozzle pressure drag
coefficient of 0.0606. The slight difference of 0.001 further emphasizes the accuracy of the three-
dimensional distribution. The under-prediction of the pressure recovery by the two-dimensional
solution results in a predicted nozzle pressure drag coefficient of 0.1686, almost three times the
measured experimental nozzle pressure drag.

Figure 36 illustrates the centerline surface pressure distributions at a supercritical freestream
Mach number of A/,=1.2. The three-dimensional solution follows the experimental data very well.
The measured experimental nozzle pressure drag coefficient is 0.2465, and the predicted nozzle
pressure drag coefficient is 0.2144. The smaller predicted drag coefficient by the three-dimensional
solution is consistent with the pressure distribution in Figure 36, as the pressure drag coefficient is

representative of the area under the pressure distribution. The three-dimensional effects associated
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with the rectangular boat-tail afterbody are significant. Hence, the two-dimensional assumption for

the afterbody flow may introduce error, and not accurately represent true flowfield solution.
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4. Concluding Remarks

A computational investigation of afterbody flow using a passive control method has been
conducted. The code, PAB3D, was used to simulate the effects of passive porosity on an aircraft
afterbody. Four different boundary conditions were used to model the transpiration velocity in the
region of passive control. The four boundary conditions were first tested on a flat surface and an
airfoil examined in two previous experimental studies on passive porosity. Pressure relief predicted
by the models in the regions of passive control represented well the trends and magnitudes shown
by the experimental data. Transpiration velocity distributions illustrate the natural suction and
blowing associated with the passive porosity concept and are consistent in magnitude with
experimental findings.

Afterbody configurations with 10°, 20°, and 30° boat-tail angles were used to obtain
computational solutions. Surface pressure distributions for baseline (no porosity) cases at a
freestream Mach number of 0.6 were compared to experimental data. Two-dimensional simulations
predicted the same pressure recovery trend as shown by the experimental data, but in magnitude,
under-predicted the recovery on the nozzle. The under-prediction of the pressure recovery on the
nozzle resulted in nozzle pressure drag predictions almost three times that shown by the
experiment. Passive control was then added on the nozzle in the region of 20%-60% of the nozzle
length. Solutions with passive control for the subsonic freestream Mach number showed porosity
models predict changes in the surface pressure distribution including reduced expansion of the flow
over the nozzle and losses in pressure recovery. Placement and extent of the porous region has also
been shown to influence the effect of porosity. As passive porosity applied in a purely subsonic
flow is considered an off-design case, losses seen in the two-dimensional subsonic solutions would

have to be weighed against advantages that might be present at transonic (design) conditions.
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As the two-dimensional solutions under-predict the pressure recovery on the afterbody
compared to the experimental data, three-dimensional effects were investigated as the cause of the
under-prediction. The afterbody configuration is rectangular, and pressure relief around the side of
the afterbody plays a significant role in the flow. A three-dimensional grid was generated to obtain
solutions for comparison with the two-dimensional solutions. Three-dimensional, baseline solutions
showed significant improvement in representing the pressure relief shown by the experimental data.
Very little error is seen in the drag predictions from the three-dimensional solutions. Hence, the
afterbody flow is shown to be three-dimensional in nature.

As three-dimensional effects have been shown an important part of the afterbody flow, in
future work, passive porosity should be examined in a three-dimensional computation. Accurate
representation of the flow physics is essential in determining true advantages of the passive
porosity control method. Drag predictions must be accurate for baseline cases before reductions in
drag as a result of passive control can be ascertained. The effects of passive porosity should also be
examined on the afterbody in the presence of a shockwave resulting from transonic and supersonic
freestream Mach numbers. Different porous region configurations and placements should be

considered, and results compared to passive porosity experimental tests planned in the future.
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6. Tables

Parameter Chokani & Squire? Bahi!2 Afterbody
(present work)
d 0.032in 0.0121in 0.02in
1, 0.0118in 0.1251n 0.1251n
H 1 1 1
P 0.136 0.06 0.20
Table 1:

Geometric parameters used in Porous Wall Models

Block No. 1 2 3 4 5 6
111(Fine) 169x157 21%635 97x65 149%x157 97x157 97%65
122(Medium) 85x79 11x33 49x33 75%x79 49x79 49x33
144(Coarse) 43x39 5x17 25x17 37x39 25%39 25x17
Block No. 7 8 9 10 11
111(Fine) 97x65 41x65 109%157 97x157 129x157
122(Medium) 49x%33 21x33 55x79 49x79 65%x79
144(Coarse) 25%17 11x17 27x39 25x39 33x39

Table 2:

Two-Dimensional Afterbody Grid Dimensions

Porous model 10° Nozzle 20° Nozzle 30° Nozzle

Baseline .065 169 293

Darcy-constant .070 175 269

Darcy-sinusoidal .069 167 291

Darcy-geometric .069 259 289

Pipe flow 068 152 281
Table 3:

Afterbody Pressure Drag Coefficients for Passive Porosity from 20-60% of Afterbody Length
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Porous model 20° Nozzle 30° Nozzle

Baseline 169 293

Darcy-geometric 194 354

Pipe flow 187 321
Table 4:

Afterbody Pressure Drag Coefficients for Passive Porosity from 0-
40% of Afterbody Length

Porous model 20° Nozzle 30° Nozzle
Baseline .169 .293
Darcy-geometric 154 298
Pipe flow 156 285
Table 5:

Afterbody Pressure Drag Coefficients for Passive Porosity from 20-
40% of Afterbody Length



Appendix A
Navier-Stokes Equations

The governing equations in P4B3D are the three-dimensional, time-dependent, Reynolds-averaged
simplified Navier-Stokes equations obtained by neglecting all streamwise derivatives of the viscous
terms. In generalized coordinates and conservation form, the simplified Navier-Stokes equation is

Q+F.+G,+H.=0

where
~ 0
Q= J
N 1 . _
F=7@Q+QF+QG+4H)
L1
G=7@Q+mF+mG+mH)

A=tc0re Feg,GegH)

with generalized coordinates

& = &&,y,z,t) =Streamwise (marching) direction
7 = n(xy,z,t) =Spanwise or circumferential direction
¢ = {{ky,z,t) =Normal direction

and their derivatives

-

5, = _(:x'\‘r + é:_vyr + C-::::I )
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The vector quantities in the governing equations are defined by
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and the pressure is related to the energy by

p= (V—l{e—%p(u: +v7 o+ “_:)}

The viscous terms are defined as

0
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X2
or
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where shear stress terms are defined as the sum of the laminar and turbulent shear stresses; for

example,
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The laminar shear stress terms are given by
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and the turbulent shear stress terms are determined from the turbulence model.
The Jacobian of the transformation, J is given by

and the Prandtl number, Pr is given by
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Figure 17: Comparison of Transpiration Velocity Results for
Bahi Experiment
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Figure 18: Comparison of Transpiration Velocity Results for
Bahi Experiment



12m
b _—C, M =06
by - FLF, NPR =6
11 -:
.
L
' 144
1O v\- vvv\/\fi—/w__lr_
R : R
' 'lr "‘“l.\/u‘,"‘_—_\_r\/\ PRSI
B
09t
‘l
\
.
‘|
08 |-
C 1
.l{
L
0.7 L L ! Ll Lo R !
0 2000 4000 6000 8000 100C0 12000 14000

Iterations
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Figure 21: Residual History of Representative Afterbody Solution
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- PAB3D
Expenmental Data

05

CF
10 - M, =06
[ NPR = &
10° Nozzle
15 [ 1 ) 1 1 J
0.000 0.200 0.400 0.600 0.800 1.0C0
X1
1.0
_—— PAB3D
0O Expenmental Data
05
00 -
CP
05
k ya
-1.0 M_=06
E‘\/ NPR = 6
20° Nozzle
15 [ 1 ) L 1 }
0.000 0.200 0.400 0.600 0.800 1.000
Wl
1.0
[ PABID
O Experimental Data
05 -
00
C, - - - 0 0 [
.05 //
7
/
10 R / M_=06
AN NPR = 6
30° Nozzle
15 1 ) 1 N 1 1
0.000 0.200 0400 0.600 0.80C 1000
xA
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Figure 26: Surface Pressure Distribution for 20° Nozzle with Passive
Control From 0%-40% of the Nozzle Length
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Figure 27: Surface Pressure Distribution for 30° Nozzle with Passive
Control From 0%-40% of the Nozzle Length
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Figure 28: Transpiration Velocity Distribution for 20° Nozzle with Passive
Control From 0%-40% of the Nozzle Length
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Figure 29: Transpiration Velocity Distribution for 30° Nozzle with Passive
Control From 0%-40% of the Nozzle Length
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Figure 30: Surface Pressure Distriblﬁtion for 20° Nozzle with Passive
Control From 20%-40% of the Nozzle Length
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Figure 31: Surface Pressure Distribution for 30° Nozzle with Passive
Control From 20%-40% of the Nozzle Length
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Figure 32: Transpiration Velocity Distribution for 20° Nozzle with Passive
Control From 20%-40% of the Nozzle Length
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Figure 33: Transpiration Velocity Distribution for 30° Nozzle with Passive
Control From 20%-40% of the Nozzle Length



Figure 34: Three-Dimensional Afterbody Quarter Grid: a) Surface Grid. b) Cross-sectional
View at Nozzle Connect
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Figure 35: Comparison of Two- and Three-Dimensional Afterbody Solutions
to Experimental Data for M=0.6
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Figure 36: Comparison of Three-Dimensional Afterbody Solution
to Experimental Data M =1.2



